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Generalized fixed point theorems on metric spaces

Naveen Chandra∗, Bharti Joshi, Mahesh C. Joshi

Abstract. In this paper, we establish some fixed point theorems for
single valued and multi-valued mappings on a complete metric space.
Suzuki’s and some other fixed point theorems are generalized by taking
a more general contractive condition for single valued mappings. It is
also proved that our result characterizes the completeness of the metric
space. Further, taking generalized contractive condition, a fixed point
theorem is also established for multi-valued mappings.

1. Introduction

The Banach contraction principle (BCP), because of its wide applications
in different areas of study, has played an important role in various fields
of mathematical analysis. The BCP states that: Let (X, d) be a complete
metric space then a self mapping T on X such that, for each x, y ∈ X,
there exists 0 ≤ a < 1 satisfying the condition d(Tx, Ty) ≤ a d(x, y) has a
unique fixed point. This result is considered as a main source of metric fixed
point theory. However, the BCP does not characterize the completeness of
the metric space. This can be easily seen from an example due to Connell
(Example 3, [6]), see also [20]. In fact, for the continuous mappings, the
fixed point property does not ensure the completeness of the metric space.

In 1969, Kannan [10] proved the following result.

Theorem 1 ([10]). Let (X, d) be a complete metric space, and T : X → X.
If there exists r ∈ [0, 12) such that for all x, y ∈ X,

d(Tx, Ty) ≤ r [d(x, Tx) + d(y, Ty)].(1)

Then T has a unique fixed point.

In 1972, Chatterjea [5] proved the following result.
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Theorem 2 ([5]). Let (X, d) be a complete metric space, and T : X → X.
If there exists r ∈ [0, 12) such that for all x, y ∈ X,

d(Tx, Ty) ≤ r [d(x, Ty) + d(y, Tx)].(2)

Then T has a unique fixed point.

It is to be noted that the Kannan’s theorem is not a generalization of
the BCP. Also, the Kannan’s result is important because Subrahmanyam
[19] proved that a metric space is complete if and only if each Kannan type
contraction on it has a fixed point.

In the last decade (2008), Suzuki [20] gave a simple but important gen-
eralization of the BCP which also preserves the metric completeness of the
space. In fact, Suzuki proved the following.

Theorem 3 ([20]). Let (X, d) be a complete metric space, and T : X → X.
Define a non-increasing function θ : [0, 1)→ (12 , 1] by

θ(r) =


1, if 0 ≤ r ≤

√
5−1
2 ,

1−r
r2
, if

√
5−1
2 ≤ r ≤ 1√

2
,

1
1+r , if 1√

2
≤ r < 1.

Assume that there exists r ∈ [0, 1) such that for each x, y ∈ X,

(3) θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r d(x, y).

Then T has a unique fixed point z ∈ X. Moreover, limn→∞ T
nx = z for all

x ∈ X.

In the same paper, Suzuki has been shown that his condition (3) is inde-
pendent from Kannan’s condition (1) with some examples.

Using Suzuki type contraction, several generalizations of the BCP and
other results, not only in metric spaces but also in other settings of the
spaces, have been obtained by many researchers (see, [2–4,8,9,11,12,14,16–
18,20] and references therein).

Let (X, d) be a metric space, and T : X → X. Then for all x, y ∈ X, we
denote

(4)
m(Tx, Ty) = a d(x, y) + bmax{d(x, Tx), d(y, Ty)}

+ c[d(x, Ty) + d(y, Tx)],

where a, b and c are non-negative reals such that a+b+2c = r with r ∈ [0, 1).
Now, we consider the following generalized contractive condition

θ(r)min{d(x, Tx), d(x, Ty)} ≤ d(x, y)
implies d(Tx, Ty) ≤ m(Tx, Ty).

(5)

It is remarkable that condition (5) is a generalization of the condition (22)
and several other conditions mentioned in [15].
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2. Main results

Theorem 4. Let (X, d) be a complete metric space, and T : X → X.
Assume that there exists r ∈ [0, 1) such that the condition (5) is satisfied for
each x, y ∈ X, where θ : [0, 1)→ (12 , 1] is as defined in Theorem 3. Then T
has a unique fixed point z ∈ X. Moreover, limn→∞ T

nx = z for all x ∈ X.

Proof. If min{d(x, Tx), d(x, Ty)} = d(x, Tx), then θ(r)d(x, Tx) ≤ d(x, Tx).
Also, ifmin{d(x, Tx), d(x, Ty)} = d(x, Ty), then d(x, Ty) ≤ d(x, Tx), which
implies θ(r)d(x, Ty) ≤ θ(r)d(x, Tx) ≤ d(x, Tx). Thus, in either cases, we
find

θ(r)min{d(x, Tx), d(x, Ty)} ≤ d(x, Tx),

so, using (5), we have

d(Tx, T 2x) ≤ m(Tx, T 2x)

≤ a d(x, Tx) + b max{d(x, Tx), d(Tx, T 2x)}
+c [d(x, Tx) + d(Tx, T 2x)]

≤ (a+ b+ 2c)max{d(x, Tx), d(Tx, T 2x)}
= r max{d(x, Tx), d(Tx, T 2x)},

which provides that

d(Tx, T 2x) ≤ r d(x, Tx), ∀x ∈ X.(6)

Consider an arbitrary point u0 = u ∈ X and define a sequence {un} in X
such that un = Tnu. Then using (6), we get d(un, un+1) ≤ rn d(u, Tu),
and so

∑∞
n=1 d(un, un+1) <∞. Thus, {un} is a Cauchy sequence in X and

completeness implies that {un} converges to a point z ∈ X. Now, we show
that

d(Tx, z) ≤ r max{d(x, z), d(x, Tx)} ∀x ∈ X\{z}.(7)

For if, x ∈ X\{z}, there exists an n0 ∈ N such that d(un, z) ≤ 1
3d(x, z) for

all n ∈ N with n ≥ n0. Then, we obtain

θ(r)min{d(un, Tun), d(un, Tx)} ≤ d(un, Tun)

≤ d(un, z) + d(un+1, z)

≤ 2

3
d(z, x) = d(x, z)− 1

3
d(x, z)

≤ d(x, z)− d(un, z)
≤ d(un, x),

and using (5), we have d(Tun, Tx) ≤ m(Tun, Tx) for n ≥ n0. Taking the
limit as n→∞, we have
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d(Tx, z) ≤ a d(x, z) + b d(x, Tx) + c [d(z, Tx) + d(x, z)]

≤ (a+ b+ 2c)max{d(x, z), d(x, Tx), d(Tx, z)}
= r max{d(x, z), d(x, Tx)},

which is the condition (7).
Furthermore, we show that

T kz = z, for some k ∈ N.(8)

To see, let us assume that it is not happening, i.e., T kz 6= z for all k ∈ N.
Then by induction, first we show that

d(T k+1z, z) ≤ rk d(z, Tz), ∀ k ∈ N.(9)

Now, from (7), we get

d(z, T 2z) ≤ r max{d(z, Tz), d(Tz, T 2z)}
≤ r max{d(z, Tz), r d(z, Tz)} = r d(z, Tz).

Also, suppose that d(z, T k+1z) ≤ rk d(z, Tz), then we have

d(z, T k+2z) ≤ r max{d(z, T k+1z), d(T k+1z, T k+2z)}
≤ r max{rk d(z, Tz), rk+1d(z, Tz)}
= r · rk d(z, Tz) = rk+1 d(z, Tz),

hence by induction we establish (9).
Moreover, applying the condition (9) to appropriate situations, we find a

contradiction to our assumption in following cases:

(i) For 0 ≤ r <
√
5−1
2 , we have θ(r) = 1, r2 + r − 1 < 0 and 2r2 < 1.

Now if d(T 2z, z) < θ(r)d(T 2z, T 3z), we get

d(z, Tz) ≤ d(z, T 2z) + d(T 2z, Tz)

< θ(r)d(T 2z, T 3z) + d(T 2z, Tz)

≤ d(T 2z, T 3z) + d(T 2z, Tz)

≤ r2 d(z, Tz) + r d(z, Tz)

< d(z, Tz),

which is a contradiction. Hence,

d(T 2z, z) ≥ θ(r)min{d(T 2z, T 3z), d(T 2z, Tz)},
which implies

d(T 3z, Tz) ≤ m(T 3z, Tz)

≤ a r d(z, Tz) + b max{r2d(z, Tz), d(z, Tz)}
+c [rd(z, Tz) + r2d(z, Tz)]

≤ a d(z, Tz) + b d(z, Tz) + 2c d(z, Tz)

= r d(z, Tz).
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Thus

d(z, Tz) ≤ d(z, T 3z) + d(T 3z, Tz)

≤ r2 d(z, Tz) + r d(z, Tz) < d(z, Tz),

which is again a contradiction.
(ii) For

√
5−1
2 ≤ r < 1√

2
, we have θ(r) = 1−r

r2
and 2r2 < 1. If

d(z, T 2z) < θ(r) min{d(T 2z, T 3z), d(T 2z, Tz)},
we get

d(z, Tz) ≤ d(z, T 2z) + d(T 2z, Tz)

< θ(r)min{d(T 2z, T 3z), d(T 2z, Tz)}+ d(T 2z, Tz)

≤ θ(r) d(T 2z, T 3z) + d(T 2z, Tz)

≤ 1− r
r2

r2 d(z, Tz) + r d(z, Tz)

= d(z, Tz)

which is a contradiction. Hence,

θ(r) min{d(T 2z, T 3z), d(T 2z, Tz)} ≤ d(z, T 2z),

which implies

d(Tz, T 3z) ≤ m(Tz, T 3z)

≤ a r d(z, Tz) + b max{d(z, Tz), r2d(z, Tz)}
+c[r2 d(z, Tz) + r d(z, Tz)]

≤ (a+ b+ 2c) d(z, Tz)

= r d(z, Tz).

Thus

d(z, Tz) ≤ d(z, T 3z) + d(T 3z, Tz) ≤ 2r2 d(z, Tz) < d(z, Tz),

which is again a contradiction.
(iii) For 1√

2
≤ r < 1, we have θ(r) = 1

1+r . Now, we claim that

(10)
either θ(r)min{d(u2n, u2n+1), d(u2n, T z)} ≤ d(u2n, z)

or θ(r)min{d(u2n+1, u2n+2), d(u2n+1, T z)} ≤ d(u2n+1, z).

Suppose inequality (10) does not hold, then

d(u2n, u2n+1) ≤ d(u2n, z) + d(u2n+1, z)

< θ(r)[min{d(u2n, u2n+1), d(u2n, T z)}
+min{d(u2n+1, u2n+2), d(u2n+1, T z)}]

≤ θ(r)[d(u2n, u2n+1) + d(u2n+1, u2n+2)]

≤ θ(r)(1 + r)d(u2n, u2n+1)

= d(u2n, u2n+1),
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which is a contradiction. Hence, there exists a subsequence {unk
} of

{un} such that

θ(r)min{d(unk
, unk+1), d(unk

, T z)} ≤ d(unk
, unk+1) ≤ d(unk

, z).

Then (5) will imply

d(Tunk
, T z) ≤ m(Tunk

, T z),

making limit as n→∞, we get

d(z, Tz) ≤ b d(z, Tz) + c d(z, Tz) ≤ r d(z, Tz)
⇒ d(z, Tz) = 0, that is Tz = z,

which is again contrary to our assumption.
Thus, we conclude that the condition (8) is true, i.e., there exists some
l ∈ N such that T lz = z. Moreover {Tnz} is a Cauchy sequence, so we have
Tz = z, i.e., T has a fixed point in X.

To prove the uniqueness of the fixed point, let Tz = z and Tz′ = z′ with
z 6= z′. Since 0 = θ(r)min{d(z, Tz), d(z, Tz′)} ≤ d(z, z′),

d(z, z′) = d(Tz, Tz′) ≤ a d(z, z′) + b max{d(z, Tz), d(z′, T z′)}
+c [d(z, Tz′) + d(z′, T z)]

≤ (a+ b+ 2c)d(z, z′) = r d(z, z′)

which is a contradiction. This completes the proof. �

Here, we give some examples which are showing that the condition (5) is
generalization of condition (3) as well as the conditions due to Kannan [10]
and Chatterjea [5].

Example 1 ([20]). Let X = {−1, 0, 1, 2} with usual metric d(x, y) = |x−y|
and T on X is defined by

Tx =

{
0, if x 6= 2,

−1, if x = 2.

Then T satisfies condition (5) and (1) but does not satisfy condition (3).

Proof. In this example, we only show that condition (5) is satisfied with
a = c = 0 and b = 1

3 . To see this, we have the following:
(i) If x = −1 and y = 0, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 1 ≤ d(−1, 0) and

d(Tx, Ty) = 0 ≤ m(Tx, Ty) = 1
3 .

(ii) If x = −1 and y = 1, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 1 ≤ d(−1, 1) and

d(Tx, Ty) = 0 ≤ m(Tx, Ty) = 1
3 .
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(iii) If x = −1 and y = 2, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 0 ≤ d(−1, 2) and
d(Tx, Ty) = 1 ≤ m(Tx, Ty) = 1.

(iv) If x = 1 and y = 0, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 1 ≤ d(1, 0) and

d(Tx, Ty) = 0 ≤ m(Tx, Ty) = 1
3 .

(v) If x = 1 and y = −1, then
θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 1 ≤ d(1,−1) and

d(Tx, Ty) = 0 ≤ m(Tx, Ty) = 1
3 .

(vi) If x = 1 and y = 2, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 1 ≤ d(1, 2) and
d(Tx, Ty) = 1 ≤ m(Tx, Ty) = 1.

(vii) If x = 0 and y = 1, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 0 ≤ d(0, 1) and

d(Tx, Ty) = 0 ≤ m(Tx, Ty) = 1
3 .

(viii) If x = 0 and y = −1, then
θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 0 ≤ d(0,−1) and

d(Tx, Ty) = 0 ≤ m(Tx, Ty) = 1
3 .

(ix) If x = 0 and y = 2, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 0 ≤ d(0, 2) and
d(Tx, Ty) = 1 ≤ m(Tx, Ty) = 1.

(x) If x = 2 and y = 0, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 2 ≤ d(2, 0) and
d(Tx, Ty) = 1 ≤ m(Tx, Ty) = 1.

(xi) If x = 2 and y = 1, then

θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 2 ≤ d(2, 1)
implies θ(r) ≤ 1

2 , which is not possible.

(xii) If x = 2 and y = −1, then
θ(r)min{d(x, Tx), d(x, Ty)} = θ(r) · 2 ≤ d(2,−1) and

d(Tx, Ty) = 1 ≤ m(Tx, Ty) = 1.

Also, T does not satisfy condition (3) but Kannan’s condition (1) is satisfied
(see Example 2 in [20]). �
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Example 2. Let X = {0, 13 , 1} with usual metric d(x, y) = |x − y| and T
on X is defined by

Tx =

{
0, if x 6= 1,
1
3 , if x = 1.

Then T satisfies condition (5) and (3) but does not satisfy Kannan’s condi-
tion (1).

Proof. In this example T does not satisfy Kannan’s condition (1). To see
this, if x = 0, y = 1. Then

d(Tx, Ty) =
1

3
and r[d(x, Tx) + d(y, Ty)] =

2

3
r,

which implies r ≥ 1
2 (not possible). But, the condition (5) (with a = c = 0

and b = 1
2) and Suzuki’s condition (3) (with r = 1

2) are satisfied. �

Example 3. Let X = {−1, 0, 13 , 1} with usual metric d(x, y) = |x− y| and
T on X is defined by

Tx =

{
0, if x 6= 1

3 ,

−1, if x = 1
3 .

Then T satisfies condition (5) but does not satisfy the conditions (1), (2)
and (3).

Proof.
(K) If x = 0, y = 1

3 , then d(Tx, Ty) = 1 and r[d(x, Tx)+ d(y, Ty)] = 4
3r.

So, d(Tx, Ty) ≤ r[d(x, Tx) + d(y, Ty)] implies r ≥ 3
4 >

1
2 ,

which is not possible. Hence, condition (1) is not satisfied.

(S) If x = 0, y = 1
3 , then θ(r)d(x, Tx) = 0 ≤ d(0, 13),

but 1 = d(Tx, Ty) ≤ rd(x, y) = 1
3r implies that r ≥ 3,

which is not possible. Hence, condition (3) is not satisfied.

(C) If x = 0, y = 1
3 , then d(Tx, Ty) = 1 and r[d(x, Ty)+ d(y, Tx)] = 4

3r.
So, d(Tx, Ty) ≤ r[d(x, Ty) + d(y, Tx)] implies r ≥ 3

4 >
1
2 ,

which is not possible. Hence, condition (2) is not satisfied.
However, T satisfies the condition (5) with a = c = 0 and b = 3

4 . �

Remark 1. Now it is obvious that Suzuki’s condition (3) implies condition
(5) but not conversely, see Example 1. Thus Theorem 4 is the generalization
of Theorem 3 due to Suzuki [20].

Taking b = c = 0 in Theorem 4, we obatin the following generalization of
Theorem 3 due to Suzuki [20].
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Corollary 1. Let (X, d) be a complete metric space and T : X → X. Define
a non-increasing function θ : [0, 1) → (12 , 1] as in Theorem 3. Assume that
there exists a ∈ [0, 1) such that for each x, y ∈ X

θ(a)min{d(x, Tx), d(x, Ty)} ≤ d(x, y) implies d(Tx, Ty) ≤ a d(x, y).

Then T has a unique fixed point in X. Moreover, limn→∞ T
nx = z, for all

x ∈ X.

Taking a = c = 0 in Theorem 4, we have the generalization of Kannan’s
Theorem 1, which is the following.

Corollary 2. Let (X, d) be a complete metric space and T : X → X. Define
a non-increasing function θ : [0, 1) → (12 , 1] as in Theorem 3. Assume that
there exists b ∈ [0, 1) such that for each x, y ∈ X

θ(b)min{d(x, Tx), d(x, Ty)} ≤ d(x, y)

implies d(Tx, Ty) ≤ b max{d(x, Tx), d(y, Ty)}

Then T has a unique fixed point in X.

Taking a = b = 0 in Theorem 4, we have the following generalization of
Chatterjea’s Theorem 2.

Corollary 3. Let (X, d) be a complete metric space and T : X → X. Define
a non-increasing function θ : [0, 1) → (12 , 1] as in Theorem 3. Assume that
there exists c ∈ [0, 1) such that for each x, y ∈ X

θ(c)min{d(x, Tx), d(x, Ty)} ≤ d(x, y)

implies d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)]

Then T has a unique fixed point in X.

Now, we prove the following result to discuss the completeness of metric
spaces.

Theorem 5. Let (X, d) be a metric space, and Ar,η be the family of mappings
T on X satisfying the condition:

(a) For r ∈ [0, 1) and x, y ∈ X,
ηmin{d(x, Tx), d(x, Ty)} ≤ d(x, y) implies d(Tx, Ty) ≤ r d(x, y),
where η ∈ (0, θ(r)] and θ is as defined in Theorem 3.

Let Br,η be the family of mappings T on X satisfying condition (a) with
T (X) is countably infinite and every subset of T (X) is closed. Then the
following are equivalent:

(i) X is complete.
(ii) Every mapping T ∈ Ar,θ(r) has a fixed point for all r ∈ [0, 1).
(iii) There exist r ∈ (0, 1) and η ∈ (0, θ(r)] such that every mapping

T ∈ Br,η has a fixed point.
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Proof. The proof is almost same as in Theorem 4 of Suzuki [20]. We just
prove the part (iii) ⇒ (i). For the clarity, we follow some of the steps of
proof of Theorem 4 of Suzuki [20]. Consider that X is not complete. Then
there is a Cauchy sequence {un} which does not converge. Define a function
f : X → [0,∞) by f(x) = limn→∞ d(x, un) for x ∈ X. Since {d(x, un)} is
a Cauchy sequence for every x ∈ X, f is well defined. We have following
observations for f :

• f(x)− f(y) ≤ d(x, y) ≤ f(x) + f(y) for x, y ∈ X;
• f(x) > 0 for all x ∈ X;
• limn→∞ f(un) = 0.

Define a mapping T on X as follows: For each x ∈ X, since f(x) > 0 and
limn→∞ f(un) = 0, there exists ν ∈ N satisfying f(uν) ≤ ηr

3+2ηrf(x). We put
Tx = uν . Then it is obvious that f(Tx) ≤ ηr

3+2ηrf(x) and Tx ∈ {un : n ∈ N}
for all x ∈ X.
Then Tx 6= x for all x ∈ X because f(Tx) < f(x). Since T (X) ⊂ {un : n ∈
N}. Which implies T (X) is countably infinite and it is easy to prove that
every subset of T (X) is closed. Let us prove condition (a). Fix x, y ∈ X with
ηmin{d(x, Tx), d(x, Ty)} ≤ d(x, y). If min{d(x, Tx), d(x, Ty)} = d(x, Tx),
then the proof follows from Suzuki (Theorem 4, [20]).
If min{d(x, Tx), d(x, Ty)} = d(x, Ty), then ηd(x, Ty) ≤ d(x, y). Now, in
the case where f(y) > 2f(x), we have

d(Tx, Ty) ≤ f(Tx) + f(Ty)

≤ ηr

3 + 2ηr
(f(x) + f(y))

≤ r

3
(f(x) + f(y))

≤ r

3
(f(x) + f(y)) +

2r

3
(f(y)− 2f(x))

= r(f(y)− f(x)) ≤ r d(x, y).

In the other case, where f(y) ≤ 2f(x), we have

d(x, y) ≥ ηd(x, Ty) ≥ η(f(x)− f(Ty))

≥ η(f(x)− ηr

3 + 2ηr
f(y))

≥ η(f(x)− 2ηr

3 + 2ηr
f(x))

=
3η

3 + 2ηr
f(x)
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and hence

d(Tx, Ty) ≤ f(Tx) + f(Ty)

≤ ηr

3 + 2ηr
(f(x) + f(y))

≤ 3ηr

3 + 2ηr
f(x)

≤ rd(x, y).

Therefore we have shown (a), that is, T ∈ Br,η. By (iii), T has a fixed point
which yields a contradiction. Hence we obtain that X is complete. �

3. Multi-valued mappings and fixed point theorems

Let (X, d) be a metric space and CB(X)(resp. CL(X)) the collection of
all nonempty closed and bounded subsets (resp. closed subsets) of X. The
Hausdorff metric H on CB(X)(resp. CL(X)) induced by the metric d is
given by

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

for A,B ∈ CB(X)(resp. CL(X)), where d(x,A) = infy∈A d(x, y). Through-
out this section, we will use the following notation:

M(Tx, Ty) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Nadler [13] introduced the concept of multi-valued contraction and proved
that in a complete metric spaceX multi-valued contraction T : X → CB(X)
has a fixed point, i.e., there exists z ∈ X such that z ∈ Tz.

Ðorić et al. [8] obtained a result for Ćirić type generalized multi-valued
mappings [1] in Suzuki type context.

Theorem 6 ([8]). Let (X, d) be a complete metric space and T : X →
CB(X). Define a non-increasing function φ : [0, 1)→ (12 , 1] by

φ(r) =

{
1, if 0 ≤ r < 1

2 ,

1− r, if 1
2 ≤ r < 1.

Assume there exists r ∈ [0, 1) such that

φ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rM(Tx, Ty),

for all x, y ∈ X. Then, there exists z ∈ X such that z ∈ Tz.

There are a large number of results obtained by many researchers for
multi-valued mapping in Suzuki type contraction, (see, [2, 7, 8, 12, 18] and
references therein). Here we prove a result which is the generalization of
result due to Ðorić et al. [8] and many other well known results for multi-
valued mappings. Our result also gives a new direction to many concepts
about Suzuki type contraction for multi-valued mappings.
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Theorem 7. Let (X, d) be a complete metric space, and T : X → CL(X).
If there exists r ∈ [0, 1) such that for each x, y ∈ X,

(11)
φ(r)min{d(x, Tx), d(x, Ty)} ≤ d(x, y)
implies H(Tx, Ty) ≤ rM(Tx, Ty),

where φ : [0, 1)→ (12 , 1] is non-increasing function defined as in Theorem 6.
Then there exists a point z ∈ X such that z ∈ Tz.

Proof. If M(Tx, Ty) = 0, then obviously x ∈ Tx. So, we may take without
loss of generality that M(Tx, Ty) > 0 for distinct x, y ∈ X. Let ε > 0 be
such that β = r + ε < 1. Take an arbitrary point u0 ∈ X and u1 ∈ Tu0,
then there exists u2 ∈ Tu1 such that

d(u1, u2) ≤ H(Tu1, Tu0) + εM(Tu1, Tu0)

similarly there exists u3 ∈ Tu2 such that

d(u3, u2) ≤ H(Tu2, Tu1) + εM(Tu2, Tu1)

Continuing in this manner, we can find a sequence {un} in X such that
un ∈ Tun−1 and

d(un+1, un) ≤ H(Tun, Tun−1) + εM(Tun, Tun−1).

Since φ(r) ≤ 1,

φ(r)min{d(un, Tun), d(un, Tun+1) ≤ d(un, un+1)

by assumption, we get

H(Tun, Tun+1) ≤ rM(Tun, Tun+1).

Thus

d(un+1, un+2) ≤ H(Tun, Tun+1) + εM(Tun, Tun+1)

≤ rM(Tun, Tun+1) + εM(Tun, Tun+1)

≤ βmax
{
d(un, un+1), d(un, Tun), d(un+1, Tun+1),

d(un, Tun+1 + d(un+1, Tun)

2

}
≤ βmax

{
d(un, un+1), d(un, un+1),

d(un+1, un+2),
1

2
d(un, un+2)

}
≤ βmax{d(un, un+1), d(un+1, un+2)}

which yields, d(un+1, un+2) ≤ β d(un, un+1).

Therefore {un} is a Cauchy sequence and has a limit in z ∈ X.
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Let x ∈ X\{z}, then d(x, z) > 0. As un → z, there exists n0 ∈ N such
that

d(z, un) ≤
1

3
d(z, x), for all n ≥ n0.(12)

Then

φ(r)min{d(un, Tun), d(un, Tx)} ≤ d(un, un+1)

≤ d(un, x) + d(un+1, x)

≤ 2

3
d(z, x) = d(z, x)− 1

3
d(z, x)

≤ d(z, x)− d(un, z) ≤ d(un, x)

hence by the assumption

H(Tun, Tx) ≤ rM(Tun, Tx)

⇒ d(un+1, Tx) ≤ H(Tun, Tx)

≤ r max
{
d(un, x), d(un, un+1), d(x, Tx),

d(un, Tx) + d(x, un+1)

2

}
.

Making n→∞, we have

d(z, Tx) ≤ r max
{
d(z, x), d(x, Tx),

d(z, Tx) + d(z, x)

2

}
(13)

≤ r max{d(z, x), d(x, Tx), d(z, Tx)}

d(z, Tx) ≤ r max{d(z, x), d(x, Tx)}

Now, we consider the following two cases:
(i) In the case where 0 ≤ r < 1

2 , we note that 2r < 1. Suppose z /∈ Tz,
let a ∈ Tz be such that 2r d(a, z) < d(z, Tz). Also a ∈ Tz ⇒ a 6= z,
then by (13) we get

d(z, Ta) ≤ r max{d(z, a), d(a, Ta)}.(14)

On the other hand

φ(r)min{d(z, Tz), d(z, Ta)} ≤ d(z, Tz) ≤ d(z, a)

then by hypothesis, we get

d(a, Ta) ≤ H(Ta, Tz) ≤ rM(Ta, Tz)

= r max
{
d(a, z), d(a, Ta), d(z, Tz),

1

2
d(z, Ta)

}
≤ r max{d(a, z), d(a, Ta), d(z, Tz)}

⇒ d(a, Ta) ≤ r max{d(a, z), d(z, Tz)}.



98 Generalized fixed point theorems on metric spaces

Because d(z, Tz) ≤ d(z, a) + d(a, Tz) = d(a, z), then using (14) we
obtain

d(a, Ta) ≤ H(Ta, Tz) ≤ r d(a, z) < d(a, z)

condition (14) will imply d(z, Ta) ≤ r d(a, z). Thus

d(z, Tz) ≤ d(z, Ta) +H(Ta, Tz)

≤ r d(a, z) + r d(a, z) = 2r d(a, z)

< d(z, Tz)

which is a contradiction. Hence z ∈ Tz.

(ii) In case where 1
2 ≤ r < 1, first we will obtain that

H(Tx, Tu) ≤ rM(Tx, Tu), for all x ∈ X.

If x = z, then previous obviously holds. So, assume that x 6= z,
then for each n ∈ N, there exists zn ∈ Tx such that d(z, zn) ≤
d(z, Tx) + 1

nd(x, z). Therefore

d(x, Tx) ≤ d(x, zn) ≤ d(x, z) + d(z, zn)

≤ d(x, z) + d(z, Tx) +
1

n
d(x, z)

using (13) we get

d(x, Tx) ≤ d(x, z) + r max{d(x, z), d(x, Tx)}+ 1

n
d(x, z).(15)

If d(x, Tx) ≤ d(x, z), then (15) implies

d(x, Tx) ≤ d(x, z) + r d(x, z) +
1

n
d(x, z)

= (1 + r +
1

n
)d(x, z)

making n→∞, we get d(x, Tx) ≤ (1 + r)d(x, z). Thus

φ(r)min{d(x, Tx), d(x, Tz)} ≤ φ(r)d(x, Tx) = (1− r)d(x, Tx)

≤ 1

1 + r
d(x, Tx) ≤ d(x, z)

then by assumption, H(Tx, Tz) ≤ rM(Tx, Tz).
If d(x, z) < d(x, Tx), then (15) implies

d(x, Tx) ≤ d(x, z) + r d(x, z) +
1

n
d(x, z)

⇒ (1− r)d(x, Tx) ≤ d(x, z).
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So,

φ(r)min{d(x, Tx), d(x, Tz)} ≤ φ(r)d(x, Tx)

= (1− r)d(x, Tx) ≤ d(x, z),

then by assumption, we get H(Tx, Tz) ≤ rM(Tx, Tz).
Taking x = un, we get

d(un+1, Tu) ≤ H(Tun, Tu) ≤ rM(Tun, Tu)

passing the limit as n→∞, we get

d(z, Tz) ≤ r max{d(z, Tz), 1
2
d(z, Tz)} = r d(z, Tz)

which implies d(z, Tz) = 0. Since Tz is closed, z ∈ Tz.

Thus, we have shown that z ∈ Tz in all cases, which completes the proof. �

Taking the mapping T as single valued in Theorem 7, we get following
corollary like Theorem 4 for the function φ(r).

Corollary 4. Let (X, d) be a complete metric space and T be a mapping on
X. Define a non-increasing function φ : [0, 1) → (12 , 1] as in Theorem 6. If
there exists r ∈ [0, 1) such that for each x, y ∈ X,

φ(r)min{d(x, Tx), d(x, Ty)} ≤ d(x, y)

implies d(Tx, Ty) ≤ rM(Tx, Ty).

Then T has a unique fixed point in X.

From Theorem 7, we get the following result as corollary which is also a
generalization of Nadler’s result.

Corollary 5. Let (X, d) be a complete metric space, and T : X → CL(X).
Define a non-increasing function φ : [0, 1)→ (12 , 1] as in Theorem 6. If there
exists r ∈ [0, 1) such that for each x, y ∈ X,

φ(r)min{d(x, Tx), d(x, Ty)} ≤ d(x, y)

implies H(Tx, Ty) ≤ r max{d(x, y), d(x, Tx), d(y, Ty)}.

Then there exists a fixed point of T in X.

4. Conclusion

We have established fixed point theorems for single valued and multi-
valued mappings in Suzuki type setting which generalize Theorem 1, The-
orem 2, Theorem 3 and many others, see examples provided in section 2.
Furthermore, it has been proved that our result also characterizes the com-
pleteness of the metric space, see Theorem 5. Henceforth, our theorems open
a direction to new fixed point results and applications.
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